首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   9篇
化学   190篇
晶体学   1篇
力学   1篇
数学   8篇
物理学   55篇
  2023年   4篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   13篇
  2007年   11篇
  2006年   8篇
  2005年   12篇
  2004年   12篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
91.
[Au(Et2dtc)2][TcNCl4] – Synthesis and Structure [Au(Et2dtc)2][TcNCl4] (Et2dtc = N,N‐diethyldithiocarbamate) is formed by the reaction of [Au(CO)Cl] with [TcN(Et2dtc)2] in dichloromethane. The solid state structure of the compound is characterized by a large triclinic unit cell (space group, P1, a = 9.422(2), b = 22.594(5), c = 32.153(7) Å, α = 72.64(1), β = 85.19(1), γ = 86.15(1)°, Z = 12) and shows an unusual arrangement due to long‐range contacts between the technetium atoms and sulfur atoms of the [Au(Et2dtc)2]+ units (3.45–3.56 Å) which assemble two anions and one cation to {[TcNCl4][Au(Et2dtc)2] · [TcNCl4]} moieties.  相似文献   
92.
The novel mercury‐tellurium cluster [Hg8(μ‐n‐C3H7Te)122‐Br)Br3] is formed during the reaction of HgBr2 and (n‐C3H7Te)2Hg in DMSO. Its crystal structure has been elucidated showing [Hg8(μ‐n‐C3H7Te)122‐Br)]3+ units with a bromine‐centered distorted Hg8 cube. The mercury atoms are bridged by n‐C3H7Te ligands and the resulting clusters are linked to a three‐dimensional network by bromine atoms. The close packing of the cluster is mainly determined by the flexible n‐propyl residues of the telluride building blocks.  相似文献   
93.
[Tc(NBCl2Ph)Cl2(Me2PhP)3] and [Tc(NBH3)Cl2(Me2PhP)3] – the First Technetium Complexes with Nitrido Bridges between Technetium and Boron [TcNCl2(Me2PhP)3] reacts with BCl2Ph or BH3 · THF at low temperatures under formation of complexes containing a nitrido bridge between technetium and boron. The compounds are instable and decompose at room temperature under cleavage of the N–B bonds. The pale‐purple [Tc(NBCl2Ph)Cl2(Me2PhP)3] crystallizes in the orthorhombic space group Fdd2. The Tc≡N bond is only slightly lengthened by the formation of the N–B bond of 1.564(4) Å. However, a considerable lengthening of the Tc–Cl bond in trans position to the nitrido ligand is observed which can be attributed to an decreasing of the structural trans influence of the nitrido moiety. A similar structural feature can be found in [Tc(NBH3)Cl2(Me2PhP)3] which is the first structurally characterized transition metal complex containing a nitrido bridge to unsubstituted borane.  相似文献   
94.
The reactions between diphenyl ditelluride, (PhTe)2, or di(β-naphtyl)ditelluride, (β-naphtylTe)2, with equivalent amounts of iodine have been reinvestigated and the crystal and molecular structures of iodophenyltellurium(II), (PhTeI)4, and diiododi-(β-naphtyl)tellurium(IV), (β-naphtyl)2TeI2, have been determined. The structure of iodophenyltellurium(II) (space group Cc, a = 13.850(5) Å, b = 13.852(3) Å, c = 16.494(6) Å and β = 101.69(2)°, Z = 4) is built up by four PhTeI units which are linked by weak Te–Te interactions with Te–Te distances between 3.152(5) Å and 3.182(4) Å. The angles between the tellurium atoms are approximately 90° giving an almost perfect square. Long range secondary bonds (Te–I: about 4.2 Å) link the tetrameric units to give an infinite two-dimensional network. Iodo(β-naphtyl)tellurium(II) is less stable than the phenyl derivative. Solutions of this compound decompose under formation of elemental tellurium and (β-naphtyl)2TeI2. (β-Naphtyl)2TeI2 crystallises in the monoclinic space group C 2/c (a = 21.198(6) Å, b = 5.8921(8) Å, c = 16.651(5) Å, β = 114.77(2)°). The tellurium atom is situated on a two-fold crystallographic axis and Te–I and Te–C bond lengths of 2.899(1) and 2.108(7) Å have been determined.  相似文献   
95.
The compounds (NH4)2[(AuI4)(MI4)] (M = Ga, In) were obtained in sealed glass ampoules by reaction of I2, NH4I, Au and Ga or In as air‐sensitive black crystals. Both compounds crystallize in the orthorhombic space group Pnma (No. 62) and are isotypic: (NH4)2[(AuI4)(GaI4)], a = 12.619(2), b = 20.625(5) and c = 7.693(2) Å; (NH4)2[(AuI4)(InI4)], a = 12.587(2), b = 20.606(5) and c = 7.696(2) Å. The structures can be described as constituted of NH4+ cations and anionic zig zag chains of alternating tetrahedral MI4 (M = In, Ga) and square planar AuI4 units running along [010]. Within the chains, the MI4 ions form weak interactions with two of their I atoms to the AuI4 ions resulting in strongly elongated AuI6 octahedra.  相似文献   
96.
(Bu4N)[Re{NB(C6F5)3}Cl4(OH2)] – Structure and EPR Spectra The title compound represents the first structurally characterized rhenium(VI) complex with a bridging nitrido ligand. It has been prepared by the reaction of (Bu4N)[ReNCl4] with B(C6F5)3 in CH2Cl2. An almost linear (170.5(3)°) nitrido bridge with a Re≡N bond length of 1.672(4) Å is formed. The coordination position trans to the multiple bond is occupied by a molecule of water. The EPR parameters of the title complex are reported and discussed with those of [ReNCl4] concerning the spin-density distribution in the ‘‘ReNCl4”︁”︁ unit.  相似文献   
97.
Density distribution across the nuclear surface is obtained in the approximation of relatively sharp nuclear edge. It is used to determine dynamical parts of the density relevant to density vibration resonances. Results of the simple calculations are in close agreement with detailed microscopic theories.  相似文献   
98.
99.
100.
LetX be a standard Gaussian random variable andG an absolutely continuous function. The inequality $$Var G(X) \leqslant E(G'(X))^2 $$ was proved in Nash and later rediscovered in Brascamp and Lieb as a special case of a general inequality and in Chernoff. All the proofs are based on properties of the Gaussian density. By using the characteristic function rather than the density, generalizations with higher order derivatives are obtained. The method also establishes potentially useful connections with Karlin's total positivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号